XIII Encuentro Internacional de Estudiantes de Psicología, del 6 al 10 de mayo del 2024, en modalidad presencial y virtual.
European-Latin American Conference of Theoretical and Applied Mechanics (ELACTAM 2024), del 29 de enero al 2 de febrero

30 de mayo de 2023 a 2 de junio de 2023 Ciencias Naturales, Exactas y Ténicas
Facultad de Matemática y Computación
America/Havana zona horaria

Multivariate Intrinsic Local Polynomial Regression on Isometric Riemannian Manifolds: Applications to Positive Definite data.

No programado
20m
Facultad de Matemática y Computación

Facultad de Matemática y Computación

Ponente

Ronaldo García (The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China. . Cuban Neuroscience Center.)

Descripción

The paper proposes a new method of intrinsic non-parametric Riemannian regression problems using Isometric Riemannian Manifolds (IRMs). IRMs are Riemannian manifolds that share similar geometrical characteristics through isometry. We introduce a method for computing Intrinsic Local Polynomial Regression (ILPR) on IRMs, which enables the global mapping of data from one Riemannian manifold to another while preserving the underlying geometry. The paper also generalizes ILPR to handle multivariate covariates on any Riemannian manifold. The exact analytical expression of the ILPR estimator on manifolds equipped with a Euclidean Pullback Metric (EPM) is provided. The paper focuses on a group of Riemannian metrics on the Symmetric Positive Definite (SPD) manifold, a mathematical structure that arises in machine learning and neuroscience applications. It is shown that several metrics on the SPD manifold are EPMs. A closed analytical expression for the multivariate ILPR estimator on the SPD manifold is derived based on these EPMs (ILPR-EPMs)$\widehat{\beta} = F_S(I_n |\otimes|(WX^T(XWX^T)^-)$, $|\otimes|$ is the Tracy-Singh product. The performance of the ILPR under two specific EPMs, Log-Cholesky and Log-Euclidean, is evaluated on simulated data on the SPD manifold and compared with extrinsic LPR using the Affine-Invariant. The results show that the ILPR using Log-Cholesky metric provides a better trade-off between error and time than other metrics. Finally, Log-Cholesky metric on the SPD manifold implements an efficient and intrinsic version of Riem t-SNE. This technique allows visualizing of high-dimensional SPD data. The code for implementing ILPR-EPMs and other relevant calculations is available on the GitHub page.

Autor primario

Ronaldo García (The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China. . Cuban Neuroscience Center.)

Coautores

Ying Wang (The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China. . Cuban Neuroscience Center.) Dr. Min Li (The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.) Dr. Lídice Galán García (Cuban Neuroscience Center) Dr. Pedro Valdes Sosa (The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.)

Materiales de la presentación

Todavía no hay materiales.