30 de mayo de 2023 a 2 de junio de 2023 Ciencias Naturales, Exactas y Ténicas
Facultad de Matemática y Computación
America/Havana zona horaria

Modeling neural activity of Caenorhabditis elegans through neural message passing.

No programado
20m
Facultad de Matemática y Computación

Facultad de Matemática y Computación

Ponente

Yeslaine Hernández (Facultad de Física, Universidad de La Habana)

Descripción

The great complexity of the human connectome motivates the study of a simpler neural network. For that purpose, the Ising Model was applied on experimental data on the synaptic connectivity of Caenorhabditis elegans (C. elegans) in resting-state, assigning a binary variable (representing active or inactive states) to each neuron in the network. The dynamics of this system is postulated as a message passing network, encoded by the Belief Propagation algorithm (BP) in its criticality region. The inferences of neuronal activity maps were obtained for different times of the nematode's life cycle. We determined the network susceptibilities as a measure of correlations in the system through the Susceptibility Propagation algorithm (SP). Finally, we applied clustering methods to obtain functional clusters and analyse similarities between them and the real functional clusters (sensory, interneurons and motor). All this contributed to the analysis of structure-function relationship in the C. elegans neural network.

Autor primario

Yeslaine Hernández (Facultad de Física, Universidad de La Habana)

Coautores

Prof. David Machado (Facultad de Física, Universidad de La Habana) Dr. Roberto Mulet (Facultad de Física, Universidad de La Habana)

Materiales de la presentación

Todavía no hay materiales.