30 de mayo de 2023 a 2 de junio de 2023 Ciencias Naturales, Exactas y Ténicas
Facultad de Matemática y Computación
America/Havana zona horaria

Heterogeneous AutoML Benchmark

No programado
20m
Facultad de Matemática y Computación

Facultad de Matemática y Computación

Ponente

Ernesto Luis Estevanell-Valladares (Departamento de Inteligencia Artificial, Facultad de Matemática y Computación, Universidad de la Habana)

Descripción

Artificial intelligence continues to advance and, with it, automated machine learning systems (AutoML). These systems extend their functionalities with novel techniques to solve many real-life problems with adequate performance. Still, the application spectrum grows more significant, and new AutoML tools are coming to light increasingly. Because of this, it is necessary to measure the performance of each of the new-generation systems and update the performance reference of more veteran systems against new problems. In this paper, we present HAutoML-Bench, a benchmark that quantifies the performance of machine learning tools in heterogeneous scenarios. Existing benchmarks are studied to compile strategies and avoid errors in their construction. All the strategies followed for their training are presented, and their effectiveness is analyzed. In addition, experiments, including qualitative and quantitative evaluations of state-of-the-art AutoML systems, are performed.

Autor primario

Ernesto Luis Estevanell-Valladares (Departamento de Inteligencia Artificial, Facultad de Matemática y Computación, Universidad de la Habana)

Materiales de la presentación

Todavía no hay materiales.