30 de mayo de 2023 a 2 de junio de 2023 Ciencias Naturales, Exactas y Ténicas
Facultad de Matemática y Computación
America/Havana zona horaria

Sparse change-point detection in high dimension and regularization

No programado
20m
Facultad de Matemática y Computación

Facultad de Matemática y Computación

Ponente

Alain CELISSE (Paris 1 Panthéon-Sorbonne University)

Descripción

Many automatic monitoring applications collect high-dimensional time-series data, but only a small number of components contain meaningful information, such as changes in the signal's average value. The rest of the components are just noise. In such a high-dimensional setting, where the useful signal is sparse, we have developed a new segmentation algorithm that identifies the informative components, which leads to more accurate segmentations. Our work focuses on detecting changes in the average of a multivariate signal. We propose a two-step approach inspired by sparse clustering. First, we construct a sparse weight vector that reduces the influence of non-informative components and thereby reduces the dimensionality of the time-series. In the second step, we compute candidate change points from the weighted time-series. Simulated examples demonstrate that our weighting procedure effectively reduces dimensionality and produces more relevant segmentations.

Autores primarios

Alain CELISSE (Paris 1 Panthéon-Sorbonne University) Prof. Madalina Olteanu (Université Paris-Dauphine, CEREMADE)

Materiales de la presentación

Todavía no hay materiales.